An Introduction to wxPython

Robin Dunn

O’Reilly Open Source Convention
July 24-28, 2006

Presentation Overview

* Your Instructor

* Introduction

* GUI Basics

* wxPython Fundamentals
* wxPython Widgets

* Event Handling

* Window Layout
Device Contexts
Tools

Robin Dunn

* Creator and maintainer of wxPython
* Programming for 25+ years, started in Junior High
* Working on wxPython for about 9 years

— More or less full-time for 3+ years
* Member of the wxWidgets core team
* Currently on contract with OSAF

* Coauthor of wxPython in Action

Why wxPython?

wxPython is an open source GUI toolkit based on the
wxWidgets (formerly wxWindows) library

Designed to be cross-platform and supports most
Unix/Linux platforms, MS Windows and Mac OS X

Uses native widgets wherever possible to preserve native
Look and Feel.

Extensive sample programs, helpful and capable community

Mature, well established projects.
— wxWidgets: 1992
— wxPython: 1996

Basic architecture

wxPython Library

Proxy classes —»

wxWidgets Toolkit

Platform GUI

Operating System

Partial class hierarchy

A

wx.Object

wx.EvtHandler

< wx.Window

A

wx.TopLevel Window

A

wx.Panel

wx.Frame

A

wx.Dialog

wx.ScrolledWindow

wx.Control

A

[

Getting started with wxPython

* Choose an installer
— http://wxPython.org/downloads.php
— Windows *.exe installers, Linux RPMs or OSX *.dmg
— Can be built from source with a few prerequisites

* Which version of Python do you use?
- 23,24,25

* Unicode or ANSI?

— Unicode builds available on all platforms, but be careful with
Win9x/ME

— ANSI available for platforms, but may be phased out soon.

http://wxpython.org/downloads.php
http://wxpython.org/downloads.php

Getting started with wxPython

* Choose an editor or development environment:
— Boa Constructor
— WingIDE
— SPE
— SCiTE

— Emacs, vi, etc.

* It’s just plain text, so any ordinary editor and command line
will do.

Getting started with wxPython

* Ready, set, go!

* The wxPython Demo 1s a great way to learn about the
capabilities of the toolkit.

>

. Fun the %
~= asFython;
' EDEMDE

Getting started with wxPython

% wxPython: (A Demonstration)

File Demo Help

= wxPython Overview wxPython Qverview | Demo Code |
= Recent Additions/Updates

égzldoigt?::d;"ﬂixin wx Pyth O n

RichTextCtrl
Treebook wxPython is a GUI toolkit for the Python programming language. It allows Python programmers to create programs with a
Toolbook robust, highly functional graphical user interface, simply and easily_ It is implemented as a Python extension module
Pickers (native code) that wraps the popular wxWindows cross platform GUI library, which is written in C++.
Frames and Dialogs
Common Dialogs Like Python and wxWindows, wxPython is Open Source which means that it is free for anyone to use and the source
More Dialogs code is available for anyone to look at and modify. Or anyone can contribute fixes or enhancements to the project.
Core Windows,Controls
"Book” Controls wxPython is a cross-platform toolkit. This means that the same program will run on multiple platforms without
Custom Controls modification. Currently supported platforms are 32-bit Microsoft Windows, most Unix or unix-like systems, and Macintosh
More Windows/Controls 0S X. Since the language is Python. wxPython programs are simple, easy to write and easy to understand.
Window Layout
Process and Events This demo is not only a collection of test cases for wxPython, but is also designed to help you leam about and how to
Clipboard and DnD use wxPython. Each sample is listed in the tree control on the left. When a sample is selected in the tree then a module
Using Images is loaded and run (usually in a tab of this notebook,) and the source code of the module is loaded in another tab for you to
Miscellaneous browse and learn from.

Check out the samples dir too

OnAppActivate: True

’»" \ OnActivate: True

Getting started with wxPython

File Demo Help
Frames and Dialogs # || | TextCtrl Overview | Demo Code | Demo |
Common Dialogs
More Dialogs
[=- Core Windows/Controls w. TextCtrl
i Posword []
Button
CheckBox Multi-ine Here is a loooooonoooooooong line
ChecklistBox of text setin the control, ¢
E’;;IEZBDX The quick brown fox jumped over
the lazy dog...
Grid
E;lSB_Oh:I(egaExample Rich Text If supported by the naﬁve. control,
ListCirl this is red, and this is a different
ListCirl_virtual [font,
ListCtrl_edit
Menu
PopupMenu
PopupWindow Test Positions [n173455739
RadioBox 0123456759
ot o
SashWWindow 0123455729
ScrolledWindow
Slider
SpinButton
SpinCtrl
SplitterWindow
StaticBitmap
StaticBox
StaticText Running dema module... s
StatusBar — |Loading demo StockButtens.py... B
f \ StockButtons Running dema module...
TextCtrl Loadi!ﬂg tiljemo Texcil:Clh'I.py. .
Running demo module. ..
ToggleButton OnActi\?ahe: False
ToolBar OnAppActivate: False
TreeCtrl OnAppActivate: True
Validator OnActivate: True =
"Book” Controls b b
<

File Demo Help

Getting started with wxPython

CheckBox
CheckListBox
Choice
ComboBox
Gauge

Grid

Grid_MegaExample

ListBox
ListCtrl
ListCtrl_virtual
ListCtrl_edit
Menu
PopupMenu
PopupWindow
RadioBax
RadioButton
Sashwindow
ScrolledWindow
Slider
SpinButton
SpinCtrl
Splitterwindow
StaticBitmap
StaticBox
StaticText
StatusBar
StockButtons
ToggleButton
ToolBar
TreeCtrl
Validator

» "Book" Controls

» Custom Controls

TewtCtrl Overview | Demo Code | Demo |

Active Version: (+) Qriginal) o= l1~ -:ZI'|.:1|'|-:_|~:-:-]lL:-+I~:t~: Modified
1
2 import sys
3 import wx
4
< Ed
4]

7 O class TestPanel (wx. Panel):
80 def OnSetFocus(self, evt):
9 L print "OnSetFocus”

10 evt. SkipQ

11 & def OnKillFocus(self, evt):

12 L print "OnkKillFocus”

13 evt. Skip0)

145 def onWindowDestroy(self, evt):

15 print "OnwindowDestroy"

16 evt. SkipQ

17

18

182 def_init_ (self, parent, log):

20 wi.Panel._init_ (self, parent, -1)

21 self.log = log

22

23 11 = wx. StaticText (self, -1, "wx TextCtr")
24 tl = wx. TextCtrl (self, -1, "Test it out and see", size=(125, -1))
25 wi. Callafter (t1.SetinsertionPoint, 0)

26 self.tcl =tl

27

28 self. Bind{wx.EVT_TEXT, self.EvtText, t1)

ii i IE iﬁiﬁiiﬁ i ﬁiﬁi ii[EvtCharl

OnActivate: True

OnAppActivate: True

OnltemExpanded: Core Windows/Contrals
Loading demo TextCtrl.py..

Running demo module...

OnActivate: False

OnAppactivate: False

OnActivate: True

OnAppActivate: True

| »

Getting started with wxPython

®@0 6 wxPython: (A Demonstration) J
LISTLTET 1 :
ListCtrl_virtual r { Demo Code | Demo
ListCtrl_edit
M

Stock Buttons

PopupMenu
Popf“’Wi"dOW It is now possible to create "stock” buttons. Basically this means that you only have to provide one of
RadioBox the stock IDs (and an empty label) when creating the button and wxWidgets will choose the stock
RadioButton label to go with it automatically. Additionally on the platforms that have a native concept of a stock
SashWindow button (currently only GTK2) then the native stock button will be used.

ScrolledWindow
Slider
SpinButton
SpinCtrl
SplitterWindow
StaticBitmap it
StaticBox
StaticText
StatusBar
StockButtons
TextCtrl
ToggleButton
ToolBar
TreeCtrl
Validator

This sample shows buttons for all of the currenlty available stock IDs. Notice that when the button is
created that no label is given, and compare that with the button that is created.

Loading demo StockButtons.py...
Running demo module...

» "Book” Controls
p Custom Controls
» More Windows/Contri e =
7N\ > Window Layout OnActvate: Fase ;
» Process and Events OnAppActivate: False
» Clipboard and DnD OnActivate: True
p Using Images OnAppActivate: True
>

Miscellaneous

S

Check out the sample
v

Demo time...

GUI Basics

* GUI’s are composed of a collection of windows, or widgets
— Some widgets are top-level windows that are managed by the OS
— Some are contained in other widgets

* You can think of a window as a
tree of graphical components

* Before you can display a window you must

— Create the component tree, and (optionally) ...

— Associate events with particular objects and actions

GUI Basics

* GUI applications are event driven

— The application spends most of its time waiting for something to
happen, such as a keystroke, or mouse movement.

— When that something (the event) happens, information about it is
collected and sent to a handler.

— Events are dispatched asynchronously

* meaning they can happen in any order

GUI Basics

* Many events are a direct result of user actions
— Left-click on a button
— Select a menu item
— Drag an item from one panel to another
* That would actually be a sequence of events
* Other events are raised by the system

— Timer countdown expires

— An obscured part of a window i1s exposed

GUI Basics

User Triggered
Event

wxPython
MainLoop

Event
' Handler
- -
-
-
- -
- Event
:: _____ > Handler
S
S,
S,
S,
~ S
A Event

Handler

Hello World!

ex0l.py
import wx

class App(wx.App):
def OnInit(self):
frame = wx.Frame(parent=None, title="Hello World! 1")
frame.Show()
return True

app = App()
app.MainLoop()

wxPython Fundamentals

* Every application needs an instance of the wx.App class

— Some parts of the C++ library are not initialized until the app 1s
created, so it must be done before most other things.

— APIs for starting and stopping the application
— Provides the central event loop and dispatches events to handlers

— Other per-application functionality

* Traditionally, you subclass wx.App and override Onlnit for
creating the initial application widgets
— Not strictly needed any longer
— WX.App can be used without subclassing

— But 1t often still makes sense for design purposes

Hello World!

ex02.py
import wx

app = wx.App()

frame = wx.Frame(parent=None, title="Hello World! 2")
frame.Show()

app.MainLoop()

wxPython Fundamentals

* WX.App can redirect standard output

— Sends print statements and writes to sys.stdout or sys.stderr to a
window or a file
— An easy way to view status messages or tracebacks

— Controlled by parameters to wx.App. _1nit

Hello World!

ex03.py
import wx

class Frame(wx.Frame):
def init (self):
wx.Frame. init (self, parent=None, title="Hello World! 3")
bl = wx.Button(self, label="Hello", pos=(20,20))
b2 = wx.Button(self, label="World", pos=(20,60))
self.Bind(wx.EVT BUTTON, self.OnHelloWorld)

def OnHelloWorld(self, evt):
print "Hello World!"

.Y app = wx.App(redirect=True)
Frame() .Show()
app.MainLoop()

Hello World!

ex03.py
import wx

class Frame(wx.Frame):
def init (self):
wx.Frame. init (self, parent=None, title="Hello World! 3")
bl = wx.Button(self, label="Hello", pos=(20,20))
b2 = wx.Button(self, label="World", pos=(20,60))
self.Bind(wx.EVT BUTTON, self.OnHelloWorld)

def OnHelloWorld(self, evt):
print "Hello World!"

.Y app = wx.App(redirect=True)
Frame() .Show()
app.MainLoop()

wxPython Fundamentals

* Every application needs a wx.App and one or more top level
windows

* Window/Widget classes can be used directly, but you will
often subclass them to add-in your application’s
functionality

* Events are signals from the user or the system that your
application 1s interested 1n.

* Events are delivered to event handler functions (usually
_ « members of the derived widget classes)

Events can happen 1n any order

wxPython widgets: top level windows

* wx.Frame
— A container for other windows.

— Can automatically manage a MenuBar, ToolBar, and a StatusBar.

* wx.Dialog
— For Modal or Modeless dialog boxes.

* wx.MiniFrame
— Good for floating tool pallets, etc.

wx.MDIParentFrame, wx. MDIChildFrame

£ N — Multiple Document Interface

wxPython widgets : common dialogs

* All standard Windows common dialogs:
— Color, Directory, File,
— Font, PageSetup, Print,
— Message, Progress,
— FindReplace, etc.

* For other platforms either native dialogs are used, or
suitable recreations in wxWidgets are provided.

wxPython widgets : common dialogs

Choose a file

Look in: |) demo

“ 2@

My Recert cvs
Documents C)data

|_ ‘, About.py

‘, ActiveX_Flashwindow.py

B ActiveX_IEHmIWindow.py

2, ActiveX_PDFWindow.py

J ‘, ActiveXWrapper_Acrobat.py
‘, ActiveXWrapper_IE.py

., AnalogClack. py

.,ArtProvider.py

g! ‘,Bit‘napButb:n.py
] ‘,Butbon.py

D

@
@
-3
o

o

My Documents

[C)bitmaps
(C2)bmp_source

= [dlwidget

‘,Calendar.py
‘,Calendarctrl.py
‘.Checch-x.p\,r
‘,CheckListBDx.py
Bl ChecklistCiriMixin.py
‘,Choice.p\;
‘,Choicebook.py
‘,CDIDrPanel.py
‘,ColourDB.py
‘,ColourDialog.py
‘,ColourSeIect.py
‘.Comanox.py
‘,ContextHelp.p\,r

‘,Cursor.p\;

tCusmmDragAndDrop.py

8, DatePickerCtrl.py

‘,demo.py
.,Dialc-g.p\,r
‘,Dialongnits.py
.,DirDiang.py
.,DragAndDrop.py
‘Draglmage.py

B DrawxXxList.py
.,DynamicSash\’u’indou
.,EditableListBox.py
',Edibor.py
.,encc-de_bih'naps.py
‘,EventManager.py
.,FancyText.p\,r
‘,FileBrowseButbon.m

My Computer
< 2
‘g File name: b | [Open l
My Network Files of type: | Python source (™.py) A | ’ Cancel l
N

O Choose a file

[E=robind E[projects “wx2.? “ wxPython ”demnl B

EIDocuments | Name: ¥ |Modified
[EFDesktop ‘

=IFile System Eabitmaps 03/16/06
B3 stuff [Edbmp_source 06/13/06
[E3Documents [Edata 05/25/06
Edprojects B3 diwidget 03/16/06
Edtest " About.py 05/18/06
~JActiveX_Flashwindow.py 03/16/06
~JAactiveX IEHtmIWindow. py 03/16/06

JActiveX_PDFWindow. py 03/16/06 |

Amalaarlacl Nz Amel™

qp Add] l == Hemove l Python source (*py) | "]

[2 Cancel ” [Open]

wxPython widgets : basic windows

* wx.Window

— General purpose window.

* wx.Panel
— Can do tab-traversal of controls.
— Uses standard system color for the background.

* wx.ScrolledWindow

— Manages its own scrollbars and scrolling of client area.

— Transforms coordinates based on scrollbar positions.

wxPython widgets

* wx.SplitterWindow
— Can be split vertically or horizontally.

— Draggable sash for redistributing the space between sub-windows.

wxPython widgets

* wx.grid.Gnid

— Table or spreadsheet-like capabilities.

— Editors, Renderers, Tables (the data provider) can all be customized
and “plugged n”.

wxPython widgets

i Simple Gnd Demo

=10] x|

[V PR ' MR

Limited text

Another cell

et another cell

Thiz cell iz read-only

'ou can veto editing this cell

Thiz default cell

il ceverflow into

neighboring cells, but not iF you turn overflg

i off.

Thiz cell iz et to zpan 3 rows and 3 columng

wxPython widgets

* wx.StatusBar

|ﬁ Custom StatusBar... ||‘ togale clock 275ep-1999 12:23:19

* wx.ToolBar

i Test ToolBar [_ [O] x|

&[] ; T[T

i Test ToolBar Mi=] B3
Z N\ hea@lrT

wxPython widgets

* wx.Notebook
— Manages multiple windows with tabs.
— Tabs can be on any side of the notebook that the platform supports.

i wxMNotebook Overview I Demao Code I—Dl-mo-‘

l@ Blue || Red || ScrolledWindow || Green || Grid || List || Cyan | White |Midnight Blue || Indian Red

wxPython widgets

* wx.html. HtmlWindow

— Capable of parsing and rendering most simple HTML tags.
— Custom Tag Handlers can change or add to how HTML is rendered.

<wxp class="wx.Button'">
<param name="label" wvalue="Okay">
<param name="id" value="wxID OK">
</wxp>

wxPython widgets

 wx.html.HtmlWindow

O About the wxPython demo

wxPython widgets: controls

* wx.Button, wx.BitmapButton
* wx.RadioBox, wx.RadioButton

* wx.CheckBox
* wx.Choice ‘@

* wx.ComboBox

v adioBox
: ™ Apples Ceero Cone hwo
'SplnButton ¥ Oranges ithree (fowr 1 five
[T Pears iy " zeven (eight

wxPython widgets: controls

* wx.ToggleButton
* wx.gizmos.EditableListBox

sun Mon Tue Wed Thuy Fri Sat
1 2 3

* wx.lib.masked.TextCtrl 4 5 5 7 8 8 10

11 12 13 14 15 16 17
18 18 20 2 22 23 24

* wx.calendar.CalendarCtrl % % 7 W W W

* wx.lib.masked. TimeCtrl

,': Thiz iz a nifty LiztB ox widget
=
.

that iz editable by the ugzer.

|52 the butons above to
manipulate iternz in the: list

r to add new ones.

| These | | oo ||

wxPython widgets: controls

* wx.TextCtrl

— Password masking, multi-line
with or without word-wrap,
simple attributes, etc.

Test it out and zee

Here iz a looooooooooooooong line of 2
text zet in the control.

The quick, brown fox jumped over the
lazy dog...

If zupported by the native contral, this

iz red, and this iz a different font

wxPython widgets: controls

* wx.ListBox
* wx.CheckListBox

* wx.Gauge

— G auge and weSlider

1NN

e 0/ ——fF——m

* wx.Slider

* wx.StaticBox

Select one: [ogn Select many:
ane
bio

o A fawr

five
3%

EEVEN
einht j

wxPython widgets : controls

* wx.ListCtrl

— Supports list, icon, small icon, report views.
— Virtual mode, where data items are provided by overloaded

methods.
@Bad English The Price Of Love Rock
@ DMA featunng Suzanne Yega Tom's Diner Rock
@ George Michael Fraving For Time Rock
@ Gloria Estefan Here e Are Rock
@ Linda Fonstadt Don't Know Much Rock
(35 Paul Yaung OhGirl Rock
@ Paula Abdul Opposites Attract Rock
@ Richard Marx Should've Known Better Rock
@ Rod Stewart Forever voung Rock
N @ Foxette Dangerows Rock
©Sheena Eastan The Lover lnMe Rock
@ Sinead O0'Connor Maothing Comparez 2 11 Rock
@ Stevie B. Because | Lovevou Rock
@ Taplar D ayre Love Wil Lead ¥ou Back Rock
@ The Bangles Eternal Flame Rock

wxPython widgets : controls

= The Roat ltem

e wx.TreeCtrl
-] Item O

— Supports images for various node states. G tom
- Item 2

— Can be virtualized by delaying the B-G5 e 3

-] item 3-a

adding of child items until the parent 1s &0 tens

expanded. [tem3<0

- item 3-c-2
- item 3-c-3
- itemn 3-c-d4
-1 item 3-d

-1 item 3

E-23 Item 4
-2 ltem &
-3 Item B
E- Item 7
[
[
[

-7 Itemn &
-7 Itern 9
417 Itern 10

wxPython widgets : controls

* wx.gizmos.TreeListCtrl

=} = The Roat item col 1 root col & root
3 ltem 0 Item 0[{c1) Item O{cZ)
3 ltem 1 Item 1(c1) Item 1{cZ)
[ltem 2 Item 2(c1) Item 2({cZ)
[ltem 3 Item 3(c1) Item S(cZ)
= Item 4 Item 4(c1) Item 4({cz)
3 item 4-2 item 4-alc1) item 4-alcz)
[} item 4-h iterm 4-hic1) item 4-hicz)
item 4-b-0 item 4-b-0(c1) item 4-h-0{c2)
| | @ item 4-0-1 item 4-b-1(c1) item 4-b-1(c2)
item 4-hb-2 item 4-b-2(c1) item 4-h-2{c2)
item 4-b-3 item 4-b-3(c1) item 4-b-3ic2)
item 4-b-4 item 4-b-4(c1) item 4-h-4{c2)
3 item 4-c item 4-ci(c1) item 4-cicz)
3 item 4-d iterm 4-dic1) item 4-dicz)
3 item 4-8 item 4-e(c1) item 4-e(cz)
[ltem 5 Item S(c1) Item S(cZ)
[ltem B Item B{c1) ltem B{cZ)

wxPython widgets

* wx.stc.StyledTextCtrl

— (wx port of Scintilla)
5 #l/bin/eny python
§ #
7 & MName: Main,py
& # Purpose: Testing lots of stuff, controls, window types, etc,
g #
10 # Author Faobin Dunn
11 #
12 # Created: A long time ago, in a gala=y far, far away..
13 # RCS-IDn $Id: Mainpy,w 1.76.2.29 2003/05/23 16:47:49 RD Exp §
14 # Copyright: (o) 1999 by Total Control Software
15 # Licencer wxWindows license
16 #
17
18 import sys, oz, time

N 19 from wiFythonows: import ™

20 from wixPython html import wacHtrmlind o
21
22 import images

T —

wxPython widgets

* And many others...

Event Handling

Most, if not all, GUI systems and toolkits are designed to be
event driven, meaning that the main flow of your program is
not sequential from beginning to end.

When something happens that 1s of interest to you (an
event), the system or toolkit calls a bit of your code that
deals with that event (event handler).

When your event handler finishes, control returns to the
“main loop” and your program waits for the next event.

While one event handler 1s running all others are blocked,
so don’t do things that take a “long time” to complete.

Event handling

User Triggered
Event

wxPython
MainLoop

Event
' Handler
- -
-
-
- -
- Event
:: _____ > Handler
S
S,
S,
S,
~ S
A Event

Handler

Event Handling

* Various event-handling models:

* Callbacks: Standalone functions associated with an event by
calling a toolkit function. There are encapsulation problems.

* Message based: Messages sent to windows for controlling
behavior, or for events.

* Virtual methods: One for each type of event. Solves
encapsulation, but leads to clutter, inflexible classes, and many
derived classes just to handle an event differently.

* Static event tables: Events are associated with classes and
Z e methods at compile time via a table. When the event occurs the
' tables are searched for a match and the method 1s invoked.

Event Handling

* wxPython uses Dynamic Event Tables

— Built at run-time.
— Events can be “bound” to any callable object that will serve as the
Event Handler:
* any method of the class receiving the event, or other classes
* standalone functions

* any object witha call method

— Handlers are connected to events with a set of binder objects:
* wx.EVT MENU
* wx.EVT PAINT
* wx.EVT SIZE

* etc.

Event Handling

* The connection, or binding, between event and handler 1s
made with the Bind method

def Bind(self, event, handler, source=None,
id=wx.ID ANY, id2=wx.ID ANY)

self.Bind(wx.EVT BUTTON, self.OnButton, theBtn)
or

theBtn.Bind (wx.EVT BUTTON, self.OnButton)

Event Handling

* Each handler is passed an event object when called.

— Contains information about the event

* Two classifications of event objects:

— Classes derived from wx.Event

* Events that only make sense for the window where the event took
place, such as wx.PaintEvent, wx.KeyEvent, wx.SizeEvent, etc.

— C(lasses derived from wx.CommandEvent

* Events that may be of interest for any object up the “containment
hierarchy,” such as wx.MenuEvent, wx.NotebookEvent, wx.ListEvent,
etc.

Event handling

ProcessEvent ProcessEvent

Event

i Enabled? No Application
triggered ’

Yes No

Has
matching

Is this the
App? No

Container
Yes

Yes

In search of Event Handlers...

self.Bind (wx.EVT BUTTON,
self.OnClick,
self .button)

WP |—> def OnClick(self, evt):

I print “click”

wx.Notebook

I

MyPanel

|

<ButtonClick> ==——)! - Button

In search of Event Handlers...

self.Bind (wx.EVT BUTTON,
self.OnClick,
self .button)

self .button.Bind(

MyFrame |—> def OnClick(self, evt):

wx .EVT_LEFT DOWN,
self.OnMouseDown)

‘ print “click”

wx.Notebook

Y

MyPanel

[

wx.Button

<ButtonClick> /

def OnMouseDown (self, evt):
\—} print “I got it first!”

evt.Skip()

Code break...

Organizing your layout

* There are various ways to do layout:

— Brute force
* All widgets are positioned and sized pixel by pixel.
* Has to be redone in every EVT SIZE event.
* Painful, cross-platform issues.
— Layout Constraints
* Powertful, but complex and verbose.
* Deals with the relationships between widgets.

* See the docs and demo for more details.

— Sizers

* Not as flexible or complex, but powerful enough.
* Worth the pain.

Organizing your layout

* Sizers
— Similar to LayoutManagers in Java.

— Not as flexible as LayoutContraints, but much simpler, once you get
over the hump.

— Relationships defined by containment within sizers or nested sizers.

— All items (widgets or nested sizers) added to a Sizer are laid out by
a specific algorithm determined by the class of sizer.
— An item’s position within its allotted space is also controllable.
* Empty space on borders
* Alignment

— You need to be able to think visually both top-down and bottom-up
to capture your design

wx.BoxSizer

= Proport... __l\gliﬁ

—~Horizontal BoxSizer

one two three

four

OVertical... - |[Okd

ane

twio

three

four

ane

twio

three

faour

getz 1/3 of the free space

gets 2/3 of the free space

wx.StaticBoxSizer

three

TN

I StaticBoxSizer Test =] <
Baox 1 Box 2 Box 3
one four SEVEN
two five eight

nine

i Boxex inside of hoxes

wXx.BoxSizer

Resize thiz frame to zee how the sizers respg

box = wx.BoxSizer (wx.VERTICAL)
box.Add (wx.Button(win, -1, "one"),
box2 = wx.BoxSizer (wx.HORIZONTAL)

box2 .Add (wx.Button(win, -1, "two"),

wx . EXPAND)

wx . EXPAND)

~

0
box2 .Add (wx.Button(win, -1, "three"), 0, wx.EXPAND)
box2 .Add (wx.Button(win, -1, "four"), 0, wx.EXPAND)
box2 .Add (wx.Button(win, -1, "five"), O .EXPAND)

box3 = wx.BoxSizer (wx.VERTICAL)

box3.Add (wx.Button(win, -1, "six"), 0, wx.EXPAND)
o~ box3.Add (wx.Button(win, -1, "seven"), 2, wx.EXPAND)
box3.Add (wx.Button(win, -1, "eight"), 1, wx.EXPAND)
¥ box3.Add (wx.Button(win, -1, "nine"), 1, wx.EXPAND)
box2 .Add (box3, 1, wx.EXPAND)
box.Add (box2, 1, wx.EXPAND)
box.Add (wx.Button(win, -1, "ten"), 0, wx.EXPAND)

I i
wX.GridSizer M E

Rezize thiz frame to see how the sizers respond... i
i Simple Gri M =] B3
. one I two three
..................................... - . S
four five Six
SEVEN eight nine
\Resize thiz frame to 32 how the sizers respond. 2

Rezize thiz frame to zee how the zizers rezpond..

wx.GridBagSizer

=,

O GridBagSizer Test =)<

span 3 rows

gpan all columns

Sizers in the Real World

* Can you see how to get here from there?

=

—IReal World Test (=] >
Account Information

Mame:

Address:

City, State, Jp:

N Phone:

Email:

Save Canicel

Sizers in the Real World

—1Real World Test =] <
Vertical Box Sizer Account Information
MName:
Address:
City, State, Jp:
~ N Phone:
Email:

Sizers in the Real World

—1Real World Test =] <
Vertical Box Sizer Account Information
Flex Grid Sizer Name
Address|

City, State, Zip

Sizers in the Real World

=

—1Real World Test (=] >
Vertical Box Sizer Account Information
Flex Grid Sizer Name:
Address:
Horizontal Box Sizer
City, State, Jp:
N Phone:

Sizers in the Real World

=

—1Real World Test (=] >
Vertical Box Sizer Account Information
Flex Grid Sizer Name:
Address:
Horizontal Box Sizer
City, State, Jp:
Ll Horizontal Box Sizer Phone:

Code break...

Drawing

* A wx.DC 1s a device context onto which graphics and text
can be drawn.

* Represents a number of output devices in a generic way:
— windows
— printers
— bitmaps
— the whole screen

* The same code may be used to draw on different devices.

Drawing

* DC’s have many drawing primitives:

— DrawArc, DrawBitmap, DrawElipse, DrawLine, DrawLines,
DrawPoint, DrawPolygon, DrawRectangle,
DrawRoundedRectangle, DrawSpline, DrawText

* And work with GDI objects:

— wx.Font, wx.Bitmap, wx.Brush, wx.Pen, wx.Mask, wx.Icon, etc.

Code break...

Tools: PyCrust

* Interactive Python Shell
* 100% Python
* Part of wxPython

* Standalone App

* Embeddable
Components

e PyCrust

R

1PyCrust @.9.4 - The Flakiest Python Shell
2 Sponsored by Orbtech - Your source for Python programming expertise.
3 Python 2.3 (#2, Aug 31 2003, 17:27:29)
4 [GCC 3.3.1 (Mandrake Linux 9.2 3.3.1-1mdk)] on linux2
5 Type "help", "copyright", "credits" eor "license" for more information.
g === import wx
7 === f = wx.Frame(None, -1, "Hello World")
8 === p = wx.Panel(f)
g === b = wx.Button(p, -1, "Click me", (10,10))
10 === f.5how(
Showibool show=True) -»> hbool

Shows or hides the window, You may need to call Raise for a top lewel
window if you want to bring it to top, although this is not needed if
Show iz called immediztely after the frame crestion, Returns True if
the window has been shown or hidden or False if nothing was done
because it already was in the reguested state,

wx. CallAfter

BusylnfoPtr

Button [_ Type: =type 'function'=

Button_GetDefaults

ButtonNamestr Value: =function CallAfter at Ox413bcdBc=>
ButtonPtr

Docstring:

CalculateLayoutEve

CalculateLayoutEve

—

—CAMNCEL

"""Call the specified function after the current and pending event
handlers hawve been completed. This is also good for making GUI
method calls from non-GUI threads."""

Tools: Embedding PyCrust components

ex04.py
import wx
import wx.py

class MyApp(wx.App):

def OnInit(self):
frame = MyFrame()

frame.Show()

shell = wx.py.shell.ShellFrame(
frame, locals={ 'wx': wx, 'frame': frame})
shell.Show()

P frame.Raise()
return True

PyCrust demo...

Tools: XRCed

e XRC 1s an XML based resource format

— Used for specifying the content and layout of
* Panels
* Frames
* Dialogs
* Menus

* Toolbars

— Can be dynamically loaded at runtime, creating all the specified
widgets

Tools:

XRCed

E O XRCed: realworld2.xrc

File Edit Miew Help

A

@ W LS9

ok g
I 29 T

. | ,A\
|]— 4 4 =
£ i

AN gl
e e fl= |

ABL T]

~Windaws——— | ~—F8& XML tree
] __| wxPanel "PANEL1"
H wxBoxsizer
Henus - 11 wwsStaticText
—— d wxsStaticline
——— 4 wxStaticText
TR —— 4 wxTextCtrl "name"
m o H - 1 wxStaticText
A & ——— d wxTextCtrl "addrl”
—— 4 spacer
rCantrals —— J wxTextCtrl "addr2”
dhe L0 —— J waStaticTent
o —=—[T] wxBoxSizer

d wxTextCtrl "city"
4 wxTextCtrl "state"
d wxTextCtrl "zipcode"
——— d wxStaticText
——— d wxTextCtrl "phone”
—— d wxStaticText
—— 4 wiTextCtrl "email”

—=—[T] wrxBoxSizer

——— 4 spacer

—— d wxButton "SaveBtn"
——— 4 spacer

—— 4 wxButton "CancelBtn"

rsizeritem

|| option:
flag:

border:
|| minsize:

|| ratio:

Q

| WHALL WxEXPAND

| pwiFlexGridSizer

cols:

|| rows:
vgap:
hgap:
growablecols:

|| growablerows:

Properties

Other tools

* wxDesigner
* wxGlade

* Boa Constructor
* DialogBlocks

* SPE

* WingIDE

* Dabo

And many others...

Questions?

Other resources

* wxPython website:
* wxPyWiki:

* Mailists:

* wxWidgets website:

* wxPython in Action

http://wxPython.org
http://wiki.wxPython.org
wxPython-users, wx-users
http://wxWidgets.org

http://wxpython.org/
http://wiki.wxpython.org/
http://wiki.wxpython.org/
http://wiki.wxpython.org/
http://wxwidgets.org/

