
1wxPython: Cross Platform GUI Toolkit

Advanced wxPython Nuts and Bolts

Robin Dunn

 O’Reilly Open Source Convention

July 26–30, 2004

2wxPython: Cross Platform GUI Toolkit

 Presentation Overview

• Introduction

• 2.5 Migration

• wx.ListCtrl

• Virtual wx.ListCtrl

• wx.TreeCtrl

• wx.gizmos.TreeListCtrl

• wx.grid.Grid

• ScrolledPanel

• wx.HtmlWindow

• Keeping the UI Updated

• Data transfer
– data objects

– clipboard

– drag and drop

• Sizers and more sizers

• Creating custom widgets

• Double buffered drawing

3wxPython: Cross Platform GUI Toolkit

Introduction to wxPython

• wxPython is a GUI toolkit for Python, built upon the
wxWidgets C++ toolkit. (See http://wxWidgets.org/)
– Cross platform: Windows, Linux, Unix, OS X.

– Uses native widgets/controls, plus many platform independent
widgets.

• Mature, well established projects.
– wxWidgets: 1992

– wxPython: 1996

4wxPython: Cross Platform GUI Toolkit

Introduction: architecture

Operating System

Platform GUI

wxPython Extension Modules

wxWidgets Toolkit

Proxy classes
wxPython Library

5wxPython: Cross Platform GUI Toolkit

Introduction: partial class hierarchy

wx.Object wx.EvtHandler wx.Window

wx.Frame

wx.Panel

wx.ScrolledWindowwx.Dialog

wx.TopLevelWindow wx.Control

6wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

• wx “Namespace”
– Instead of

 from wxPython.wx import *

 class MyFrame(wxFrame):

 ...

– we now use this by default

 import wx

 class MyFrame(wx.Frame):

 ...

– but the old “namespace” is still available via compatibility wrappers

7wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

• Module initialization
– Due to changes in the C++ library, wxWidgets is not initialized until

the wx.App object is created.

– Some beneficial side-effects:
• Can import wx to do things like check version number, get docstrings,

etc. without the overhead of fully initializing the library (connecting to
the display server, etc.)

• The thread that creates the wx.App object will be considered the “main”
thread, instead of the one that imports the wx module

– Some not so good side-effects:
• Can not create any GDI objects or do any UI related operation until the

wx.App object is created.

• Will get a wx.PyNoAppError if we can detect the situation , or a
crash otherwise 

8wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

• Have switched away from a heavily customized legacy
version of SWIG to a nearly standard SWIG 1.3.x.
– All classes are now derived from object and so are new- style

classes supporting properties, static functions, meta-classes, etc.

– More modern python proxy code is generated

– Wrapper code somewhat more efficient

– Will be able to take advantage of more advanced features in the
future

9wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

• Event binding updates
– All EVT_* event binder functions have been converted to instances of

the wx.PyEventBinder class.

– New Bind method that helps reduce the need for keeping track of
window and menu Ids

 self.Bind(wx.EVT_SIZE, self.OnSize)

 self.Bind(wx.EVT_BUTTON, self.OnButtonClick, theButton)

 self.Bind(wx.EVT_MENU, self.OnExit, id=wx.ID_EXIT)

10wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

def Bind(self, event, handler, source=None, id=wx.ID_ANY, id2=wx.ID_ANY):

 """

 Bind an event to an event handler.

 event: One of the EVT_* objects that specifies the type of event to bind

 handler: A callable object to be invoked when the event is delivered to self.

 Pass None to disconnect an event handler.

 source: Sometimes the event originates from a different window than self, but

 you still want to catch it in self. (For example, a button event

 delivered to a frame.) By passing the source of the event, the

 event handling system is able to differentiate between the same

 event type from different controls.

 id: Used to specify the event source by ID instead of instance.

 id2: Used when it is desirable to bind a handler to a range of IDs, such

 as with EVT_MENU_RANGE.

 """

11wxPython: Cross Platform GUI Toolkit

wxPython 2.5 Migration Highlights

• See http://wxPython.org/MigrationGuide.html for more.

12wxPython: Cross Platform GUI Toolkit

Questions?

13wxPython: Cross Platform GUI Toolkit

wx.ListCtrl

• Presents a list of items with one of several possible views
– List

– Report

– Icon

• Supports various attributes and operations on the list data
– Icons, and colors

– Sorting

– multiple selection

• The same native control that is used by Windows Explorer

• On GTK and Mac it is implemented generically, but there
may be native versions eventually.

14wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: Icon view

15wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: list (small icon) view

16wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: report view

17wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: report view

18wxPython: Cross Platform GUI Toolkit

wx.ListCtrl

• Same basic constructor as other windows:
 __init__(self, parent, id=-1, pos=wx.DefaultPosition, size=wx.DefaultSize,
 style=wx.LC_ICON, validator=wx.DefaultValidator,

 name=ListCtrlNameStr)

• Set view style as a style flag in the constructor

• Other useful styles:
– wx.LC_SINGLE_SEL: set single selection mode
– wx.LC_HRULES, wx.LC_VRULES: draw lines between rows and cols

in report mode.
– wx.LC_NO_HEADER: don’t use a column header in report mode.
– wx.LC_EDIT_LABELS: allow the labels to be edited

19wxPython: Cross Platform GUI Toolkit

wx.ListCtrl

• Common events to bind:
– EVT_LIST_ITEM_SELECTED
– EVT_LIST_ITEM_DESELECTED
– EVT_LIST_ITEM_ACTIVATED
– EVT_LIST_COL_CLICK

• In report mode you must define the columns, even if there is
only one.
– InsertColumn(col, heading, format=wx.LIST_FORMAT_LEFT,

width=-1)

• Icons are stored in a wx.ImageList to facilitate reuse:
– AssignImageList(imageList, which)
– SetImageList(imageList, which)

– ‘which’ is wx.IMAGE_LIST_NORMAL, or wx.IMAGE_LIST_SMALL

20wxPython: Cross Platform GUI Toolkit

wx.ListCtrl

• Add items to the wx.ListCtrl with one of the InsertItem
methods:
– InsertStringItem(index, label)
– InsertImageStringItem(index, label, imageIndex)
– InsertItem(item)

• Set values for additional columns in report mode:
– SetStringItem(index, col, label)

21wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: example

il = wx.ImageList(16,16)

imgidx1 = il.Add(bmp1)

imgidx2 = il.Add(bmp2)

lc = wx.ListCtrl(self, style=wx.LC_REPORT|wx.LC_SINGLE_SEL)

lc.AssignImageList(il)

lc.InsertColumn(0, “Column 1”)

lc.InsertColumn(1, “Column 2”, wx.LIST_FORMAT_RIGHT)

lc.InsertColumn(2, “Column 3”)

for data in GetDataItems():

index = lc.InsertImageStringItem(sys.maxint, data[0], imgidx1)

lc.SetStringItem(index, 1, data[1])

lc.SetStringItem(index, 2, data[2])

self.Bind(wx.LIST_ITEM_SELECTED, self.OnSelect, lc)

22wxPython: Cross Platform GUI Toolkit

wxListCtrl: tips and tricks

• wx.lib.mixins.listctrl has some useful helper classes:
– ColumnSorterMixin
– ListCtrlAutoWidthMixin
– TextEditMixin

– etc.

• Each item can have an integer “data value” associated with
it that will not change when the item is resorted or etc. This
value can be used to map to the original data objects, or
whatever.

• Changing the color of items is an easy way to make them
stand out.

23wxPython: Cross Platform GUI Toolkit

wx.ListCtrl: gotcha’s

• Currently icons can only be used for the first column in
report mode

• Data duplication issues…

• In serious need of a redesign…

24wxPython: Cross Platform GUI Toolkit

Questions?

25wxPython: Cross Platform GUI Toolkit

Virtual wx.ListCtrl

• wx.ListCtrl also has wx.LC_VIRTUAL style

• Can only be used with report mode

• Data items are never added to the control, instead the
control asks you for the data as it needs them for display

• Not just the strings, but attributes and image list id’s too.

• A virtual wx.ListCtrl can easily display millions of items
with very little overhead.

26wxPython: Cross Platform GUI Toolkit

Virtual wx.ListCtrl

• Simply need to call SetItemCount and to override a few
methods:
– OnGetItemText(item, column)

– OnGetItemImage(item)

– OnGetItemAttr(item)

• EVT_LIST_CACHE_HINT can be bound and used to prefetch data
items the wx.ListCtrl thinks it will need soon.

27wxPython: Cross Platform GUI Toolkit

Virtual wx.ListCtrl: example

class MyVirtualListCtrl(wx.ListCtrl):

 def __init__(self, parent, dataSource)

 wx.ListCtrl.__init__(self, parent,

 style=wx.LC_REPORT|wx.LC_SINGLE_SEL|wx.LC_VIRTUAL)

 self.dataSource = dataSource

 self.InsertColumn(0, “Column 1”)

 self.InsertColumn(1, “Column 2”)

 self.InsertColumn(2, “Column 3”)

 self.SetItemCount(dataSource.GetCount())

 self.Bind(wx.EVT_LIST_CACHE_HINT, self.DoCacheItems)

 def DoCacheItems(self, evt):

 self.dataSource.UpdateCache(evt.GetCacheFrom(), evt.GetCacheTo())

 def OnGetItemText(self, item, col):

 data = self.dataSource.GetItem(item)

 return data[col]

 def OnGetItemAttr(self, item): return None

 def OnGetItemImage(self, item): return -1

28wxPython: Cross Platform GUI Toolkit

Virtual wx.ListCtrl: gotcha’s

• Any operation that would need to visit every item in the list
will not be done in a virtual wx.ListCtrl.
– auto-sizing columns

– sorting

– etc.

29wxPython: Cross Platform GUI Toolkit

Questions?

30wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Presents a view of hierarchical data with expandable and
collapsible nodes.

• The same native control that is used by Windows Explorer

• On GTK and Mac it is implemented generically, but there
may be native versions eventually.

• Not all items have to be preloaded into the control, but can
be done on demand for a virtual view.

31wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• The root node can be hidden to give the appearance of
multiple roots.

• Nodes can have images associated with them, that are
changed based on state of the node.

32wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

33wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Interesting Styles:
– wx.TR_HIDE_ROOT

– wx.TR_MULTIPLE

– wx.TR_FULL_ROW_HIGHLIGHT

– wx.TR_EDIT_LABELS

• Common Events:
– EVT_TREE_ITEM_ACTIVATED

– EVT_TREE_SEL_CHANG(ED,ING)

– EVT_TREE_ITEM_COLLAPS(ED,ING)

– EVT_TREE_ITEM_EXPAND(ED,ING)

34wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Nodes in a wx.TreeCtrl are referred to using a class named
wx.TreeItemId which is used when accessing items, adding
child items, traversing the tree structure, finding the
currently selected item, etc.

• The root, or top-level parent node is always added first
– AppendRoot(text, image=-1, selImage=-1)

• After that, nodes can be added in any order, as long as their
parent node already exists
– AppendItem(parent, text, image=-1, selImage=-1)

• If an item should appear to have children, but you don’t
want to add them yet:
– SetItemHasChildren(item, hasChildren=True)

35wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Icons are stored in a wx.ImageList to facilitate reuse:
– AssignImageList(imageList)
– SetImageList(imageList)

• Nodes have various states, each of which can have an
associated icon
– SetItemImage(item, image, which)

• wx.TreeItemIcon_Normal
• wx.TreeItemIcon_Expanded
• wx.TreeItemIcon_Selected
• wx.TreeItemIcon_SelectedExpanded

36wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Nodes can have arbitrary Python objects associated with
them, which can be used to link tree items with your actual
data objects, etc.
– SetItemPyData(item, object)
– GetItemPyData(item)

• Nodes can have non-standard attributes:
– SetItemTextColour(item, color)
– SetItemBackgroundColour(item, color)
– SetItemFont(item, color)
– SetItemBold(item, bold=True)

37wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl

• Many node traversal methods to choose from:
– GetRootItem()
– GetItemParent(item)
– GetFirstChild(item)
– GetNextChild(item, cookie)
– GetLastChild(item)
– GetNextSibling(item)
– GetPrevSibling(item)
– GetFirstVisibleItem()
– GetNextVisible(item)

38wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl: example

il = wx.ImageList(16,16)

fldridx = il.Add(folderBmp)

fldropenidx = il.Add(folderOpenBmp)

leafidx = il.Add(leafBmp)

tree = wx.TreeCtrl(self)

root = tree.AddRoot(“root item”)

tree.SetItemImage(root, fldridx, wx.TreeItemIcon_Normal)

tree.SetItemImage(root, fldropenidx, wx.TreeItemIcon_Expanded)

for x in range(5):

 item = tree.AppendItem(root, “Item %d” % x)

 tree.SetItemImage(item, fldridx, wx.TreeItemIcon_Normal)

 tree.SetItemImage(item, fldropenidx, wx.TreeItemIcon_Expanded)

 for y in range(5):

 leaf = tree.AppendItem(item, “leaf %d-%d” % (x,y))

 tree.SetItemImage(leaf, leafidx, wx.TreeItemIcon_Normal)

39wxPython: Cross Platform GUI Toolkit

wx.TreeCtrl: gotcha’s

• On MS Windows the native control won’t sort items unless
they have a data value, even if it is not used by the sort.
Calling SetPyData(item, None) for every item solves the
problem.

• If images are used at all then every node should have an
image assigned, otherwise there will be alignment issues.

40wxPython: Cross Platform GUI Toolkit

Questions?

41wxPython: Cross Platform GUI Toolkit

wx.gizmos.TreeListCtrl

• A generic control that combines wx.ListCtrl and
wx.TreeCtrl.

• Looks like a wx.ListCtrl with an embedded wx.TreeCtrl,
but from a programming perspective it is a wx.TreeCtrl
with columns.

42wxPython: Cross Platform GUI Toolkit

wx.gizmos.TreeListCtrl

43wxPython: Cross Platform GUI Toolkit

wx.gizmos.TreeListCtrl

44wxPython: Cross Platform GUI Toolkit

Questions?

45wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

• A window implementing spreadsheet-like capabilities

• Uses a plug-in architecture where various pieces of
functionality can be replaced by other classes
– data table

– cell editor

– cell renderer

– attribute provider

• Very powerful, and very complex

• 3rd generation rewrite being considered

46wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

47wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

wx.ScrolledWindow

wx.grid.Grid

GridTableBase

GridStringTable PyGridTableBase

GridCellAttrProvider

PyGridCellAttrProvider

GridCellRenderer

PyGridCellRenderer

GridCellEditor

PyGridCellEditor

GridCellAttr

48wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

• By default uses the GridStringTable class
– Data setters and getters in the Grid class pass through to the table

– So default usage is conceptually similar to a non-virtual ListCtrl

• “Virtualizing” Grid is as simple as plugging in a custom
table class.
– Data for all cells is requested from the table as needed for display

– Editors send new values to the table for update

– Data items can be non-string types

• Tables are also the attribute provider, which passes through
to GridCellAttrProvider by default.

49wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

• GridCellAttr defines the look and feel for each cell.
– Font and Colors

– Alignment

– Read-only/read-write

– Overflow settings

– row/col spanning

– Editor

– Renderer

• Columns and rows can have a GridCellAttr too, and
overlaps are merged.

50wxPython: Cross Platform GUI Toolkit

wx.grid.Grid

• Data-type specific renderers are used for drawing the
contents of the cells.
– Each has a Draw method that is called when the grid paints itself

• Data-type specific editors are used for editing the contents
of the cells, each manages a single a wx.Control
– Passes data between the table and the control

– shows/hides the control as needed

– Only one editor can be active at once.

• Editors and Renderers can be part of the attributes set for
cells/cols/rows, or it an be driven from the data type of the
cells as reported by the table.

51wxPython: Cross Platform GUI Toolkit

wx.grid.Grid: gotcha’s

• The C++ Editor, Renderer and Attr classes use a reference
counting scheme that doesn’t blend well with Python’s.
– Have to manually call IncRef and DecRef methods

– Can be very tricky to get it right.

• There are multiple types of selections, that can all be active
at once.

• More help at:
http://wiki.wxpython.org/index.cgi/wxGrid_20Manual

52wxPython: Cross Platform GUI Toolkit

Questions?

53wxPython: Cross Platform GUI Toolkit

wx.lib.scrolledpanel.ScrolledPanel

• Problem: Sometimes you can’t fit all the desired controls
on the space available to a wx.Panel, and wx.ScrolledWindow
doesn’t automatically scroll when child windows change
focus.

• A simple Python class to the rescue!
• ScrolledPanel uses its sizer to determine what the virtual

size of the window should be, based on what the sizer
calculates as its minimum size

54wxPython: Cross Platform GUI Toolkit

wx.lib.scrolledpanel.ScrolledPanel

• As each child control receives the focus the scrolled panel
will scroll itself enough to make the child visible.

• Just need to call SetupScrolling after all children and the
sizer have been created.

55wxPython: Cross Platform GUI Toolkit

wx.lib.scrolledpanel.ScrolledPanel

56wxPython: Cross Platform GUI Toolkit

Questions?

57wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

• A simple HTML viewer that supports a subset of the
HTML standard.

• Not meant to be a full HTML browser, but is useful for
many other things:
– fancy “About Box” and other dialogs

– generic “rich” text viewer

– display widget for the results of database queries

– enhanced widget layout

– etc.

58wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

• Plug-in tag handlers allow extending the abilities in various
ways. (See wx/lib/wxpTag.py for an example)

• Plug-in file system handlers allow various standard and non-
standard protocols specified in the URLs.
– http, ftp

– zip

– mem

59wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

60wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

import sys

import wx

import wx.html

import wx.lib.wxpTag

class MyAboutBox(wx.Dialog):

 text = '''

<html>

<body bgcolor="#AC76DE">

<center><table bgcolor="#458154" width="100%%" cellspacing="0"

cellpadding="0" border="1">

<tr>

 <td align="center">

 <h1>wxPython %s</h1>

 Running on Python %s

 </td>

</tr>

</table>

61wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

<p>wxPython is a Python extension module that encapsulates the wxWindows GUI
classes.</p>

<p>This demo shows off some of the capabilities of wxPython. Select items from
the menu or tree control, sit back and enjoy. Be sure to take a peek at the source
code for each demo item so you can learn how to use the classes yourself.</p>

<p>wxPython is brought to you by Robin Dunn and

Total Control Software, Copyright (c) 1997-2003.</p>

<p>Please see <i>license.txt</i> for licensing information.</p>

<p><wxp module="wx" class="Button">

 <param name="label" value="Okay">

 <param name="id" value="ID_OK">

</wxp></p>

</center>

</body></html>

'''

62wxPython: Cross Platform GUI Toolkit

wx.HtmlWindow

 def __init__(self, parent):

 wx.Dialog.__init__(self, parent, -1, 'About the wxPython demo',)

 html = wx.html.HtmlWindow(self, -1, size=(420, -1))

 py_version = sys.version.split()[0]

 html.SetPage(self.text % (wx.VERSION_STRING, py_version))

 btn = html.FindWindowById(wx.ID_OK)

 ir = html.GetInternalRepresentation()

 html.SetSize((ir.GetWidth()+25, ir.GetHeight()+25))

 self.SetClientSize(html.GetSize())

 self.CentreOnParent(wx.BOTH)

if __name__ == '__main__':

 app = wx.PySimpleApp()

 dlg = MyAboutBox(None)

 dlg.ShowModal()

 dlg.Destroy()

 app.MainLoop()

63wxPython: Cross Platform GUI Toolkit

Questions?

64wxPython: Cross Platform GUI Toolkit

Keeping the UI updated

• When an app has many menu or toolbar items, controls,
labels, etc. that can be enabled/disabled,
checked/unchecked, toggled, etc. then it can be very
difficult to keep them all updated as program status
changes.

• wx.UpdateUIEvent is a mechanism to make it much simpler

• For common cases, the event handler merely checks the
program state and calls a method of the event object.
wx.Widgets takes care of the rest.

• Custom actions can also be done if needed.

65wxPython: Cross Platform GUI Toolkit

Keeping the UI updated

 self.Bind(wx.EVT_MENU, self.OnDoSomething, id=ID_SOMETHING)

 self.Bind(wx.EVT_UPDATE_UI, self.OnCheckSomething, id=ID_SOMETHING)

...

def OnDoSomething(self, evt):

self.someFlag = not self.someFlag

self.DoSomething()

def OnCheckSomething(self, evt):

evt.Check(self.someFlag)

66wxPython: Cross Platform GUI Toolkit

Keeping the UI updated

• wx.UpdateUIEvent is sent in idle time, before menus are
shown, and at other key points.

• If the overhead of sending the events to every window
becomes excessive then:
– Call wx.UpdateUIEvent.SetMode

(wx.UPDATE_UI_PROCESS_SPECIFIED)

– Set the wx.WS_EX_PROCESS_UPDATE_EVENTS extra style for only the
windows that you wish to receive the event.

– Or call wx.UpdateUIEvent.SetUpdateInterval to change how
often they are sent.

67wxPython: Cross Platform GUI Toolkit

Questions?

68wxPython: Cross Platform GUI Toolkit

Data Transfer

wx.DataFormat wx.DataObject

wx.DataObjectSimple

wx.DropTargetwx.DropSource

wx.DataObjectComposite

wx.PyDataObject

wx.Clipboard

wx.CustomDataObject

wx.PyDropTarget

69wxPython: Cross Platform GUI Toolkit

Data Transfer: data objects

• Represent the data that is being transferred via the clipboard
or drag and drop

• “Smart” data
– knows what formats it supports

– knows how to render itself in any of them

– can defer the creation or copying of the data until needed

• Several standard data object formats are supported

• Custom formats are easily created

• wx.DataObjectComposite can hold one or more simple data
objects and makes all of them available at once

70wxPython: Cross Platform GUI Toolkit

Data Transfer: data objects

• Creating a custom data object:

 self.format = wx.CustomDataFormat(“MyFormat”)

 dataobject = wx.CustomDataObject(self.format)

• Putting a Python object in it:

 dataobject.SetData(cPickle.dumps(myDataObject, 1))

• Fetching a Python object:

 obj = cPickle.loads(dataobject.GetData())

• Any app that understands “MyFormat” can transfer these
data objects via the clipboard and DnD.

71wxPython: Cross Platform GUI Toolkit

Data Transfer: Clipboard

• Transfers data objects via typical Cut, Copy and Paste
mechanisms

• Should normally use the global wx.TheClipboard instance,
but singleton is not enforced.

• wx.Clipboard uses a simple open, check/read/write, close
metaphor

• Should only keep the clipboard open momentarily.

72wxPython: Cross Platform GUI Toolkit

Data Transfer: Clipboard

• Write some text to the clipboard:
 if wx.TheClipboard.Open():

 wx.TheClipboard.SetData(wx.TextDataObject(“Some text”))

 wx.TheClipboard.Close()

• Read either text or a custom formatted data object from the
clipboard:
 if wx.TheClipboard.Open():

 if wx.TheClipboard.IsSupported(wx.DataFormat(wx.DF_TEXT)):

 data = wx.TextDataObject()

 success = wx.TheClipboard.GetData(data)

 text = data.GetText()

 elif wx.TheClipboard.IsSupported(self.format):

 data = wx.CustomDataObject(self.format)

 success = wx.TheClipboard.GetData(data)

 obj = cPickle.loads(dataobject.GetData())

 wx.TheClipboard.Close()

73wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• Uses same data format and object classes as wx.Clipboard

• DnD fucntionality is divided into two main classes, the
wx.DropSource and the wx.DropTarget

• The source is “in control” of the operation
– provides the data object

– specifies if it is able to be moved or just copied

– initiates the drag and is modal until the drop is completed or canceled

74wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• Initiating a DnD (usually in response to a mouse event):
 data = wx.TextDataObject(“This is some data”)

 source = wx.DragSource(self)

 source.SetData(data)

 result = source.DoDragDrop(flags)

• DoDragDrop does not return until the mouse button is
released

• If GiveFeedback is overridden in a class derived from
wx.DropSource then it is called on every mouse move

• The flags parameter specifies what drag ops are allowed:
– wx.Drag_CopyOnly

– wx.Drag_AllowMove

– wx.Drag_DefaultMove

75wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• The return value of DoDragDrop lets you know what
happened so you can respond to it
– wx.DragError

– wx.DragNone

– wx.DragCopy

– wx.DragMove

– wx.DragCancel

76wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• For any window to be the target of a DnD operation it must
have a wx.DropTarget instance assigned to it.

 self.SetDropTarget(MyDropTarget)

• The drop target has a data object selected into it which
serves to let the DnD system know what data format(s) are
accepted by the target, as well as to serve as the place to
fetch the data from.

77wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• The wx.DropTarget class has several overridable methods
that are used to facilitate the data transfer, and provide
visual indicators. All are optional except OnData.
– OnEnter(x, y, defResult)

• Called when the mouse enters the target window
– OnLeave()

• Called when the mouse leaves the target window
– OnDragOver(x, y, defResult)

• Called as the mouse moves over the window, return value indicates
default visual feedback to give

– OnDrop(x, y)

• Called when the drop happens, return False to veto the drop
– OnData(x, y, defResult)

• Called when OnDrop returns True. Should call GetData, return
value indicates the result of the DnD.

78wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

• Predefined drop target classes for text and files
– wx.TextDropTarget

• override OnDropText(x, y, text)

– wx.FileDropTarget

• override OnDropFiles(x, y, files)

79wxPython: Cross Platform GUI Toolkit

Data Transfer: Drag and Drop

class MyDropTarget(wx.PyDropTarget):

 def __init__(self, window):

 wx.PyDropTarget.__init__(self)

 self.window = window

 format = wx.CustomDataFormat(“MyFormat”)

 self.data = wx.CustomDataObject(format)

 self.SetDataObject(self.data)

 def OnData(self, x, y, defResult):

 # copy the data from the drag source to my data object

 if self.GetData():

 # convert the data object and do something with it

 datastr = self.data.GetData()

 obj = cPickle.loads(datastr)

 self.window.DoSomethingWithDroppedObject(obj)

 # What is returned signals the source what to do with the

 # original data object (if it was a move then the original

 # should be removed, etc.) In most cases just return the

 # default passed to us

 return defResult

80wxPython: Cross Platform GUI Toolkit

Questions?

81wxPython: Cross Platform GUI Toolkit

Sizers

• A widget layout mechanism that calculates the size and
position of widgets under its control based on the minimal
size required by each widget, the available space, and a
sizer-specific algorithm.

• Adapts layouts to the needs of different platforms with no
changes in the programmer’s code.

• Automatically recalculates the layout when the container
window changes size.

• Can easily manage recalculating layout when a widget
changes state (perhaps a new font or label)

82wxPython: Cross Platform GUI Toolkit

Sizers

• Some folks need a bit of a paradigm shift to understand
sizers, but once they do it becomes much easier for them
and they are able to do any kind of layout they need.

• Sizers can be nested.

• Windows with sizers of their own can also be managed by
their parent window’s sizer (IOW, a panel on a panel) and
the sizers do the RightThing.

83wxPython: Cross Platform GUI Toolkit

Sizers

• Each item managed by the sizer is allotted a certain amount
of space, and items can be variously aligned within that
space, or expanded to fill it.

• Items can have empty border space on any or all sides

84wxPython: Cross Platform GUI Toolkit

Sizers: how do they work?

• Most controls know their minimum "best size", and the
sizers query that value to determine the defaults of the
layout.

• The size that a control is created with can override the "best
size" and and it can also be explicitly set with
window.SetMinSize or window.SetSizeHints. [*]

• Most controls will adjust their "best size" if attributes of the
control change, such as the label or the font.

• [*] This is a change from earlier versions where the size of
the window when it was added to the sizer took precedence.

85wxPython: Cross Platform GUI Toolkit

Sizers: how do they work?

• The "best size" of non-control windows is determined from
the window's sizer if it has one, otherwise it is large enough
to show all the window's children at their current size. If
there are no children then it is the window's minsize if it has
one, or the current size.

• When a sizer’s Layout method is called it will:
– determine the minsize of all items under its control

– adjust the size and position of all items according to its layout
algorithm, which will also recursivly do the same for any items that
are sub-sizers

86wxPython: Cross Platform GUI Toolkit

Sizers: how do they work?

• Windows that have a sizer will call Layout in the default
EVT_SIZE handler, so whenever the size is changed the layout
of child widgets is rechecked.
– This also means that if a child window managed by a sizer has its

own sizer then adjusting the size of the child will cause Layout of
the child’s sizer to be called and recursively do the layout of the
grandchild widgets, etc.

• The order items are added to the sizer is (usually)
significant.

87wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridSizer

• In a wx.GridSizer all cells are the same size, which will
default to the size of the largest item.

• All the items are positioned within their cells as defined by
the alignment and border flags, if any.

• A gap between cells for rows and columns can be specified

• Always expands the cells to take all space given to the sizer

88wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridSizer

89wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridSizer

labels = "one two three four five six seven eight nine".split()
class TestFrame(wx.Frame):
 def __init__(self, makeLarger=False, useExpand=False):
 wx.Frame.__init__(self, None, -1, "GridSizer Test")
 if useExpand:
 flag = wx.EXPAND
 else:
 flag = 0

 # Create the sizer
 sizer = wx.GridSizer(rows=3, cols=3, hgap=5, vgap=5)

 # Create some block windows
 for label in labels:
 bw = BlockWindow(self, label=label)
 sizer.Add(bw, 0, flag)

 if makeLarger:
 center = self.FindWindowByName("five")
 center.SetMinSize((150,50))

 # Tell this window to use the sizer for layout
 self.SetSizer(sizer)

 # Change the size of the window to be the minimum
 # needed by the sizer
 self.Fit()

90wxPython: Cross Platform GUI Toolkit

Sizers: wx.FlexGridSizer

• Derives from wx.GridSizer, but not all cells are required to
be the same size.

• All cells in each row are as tall as the tallest item in that row

• All cells in each column are as wide as the widest item in
that column

• Rows and columns are not stretchable by default, but you
can specify which rows and columns should stretch when
there is additional space available.

91wxPython: Cross Platform GUI Toolkit

Sizers: wx.FlexGridSizer

92wxPython: Cross Platform GUI Toolkit

Sizers: wx.FlexGridSizer

class TestFrame(wx.Frame):
 def __init__(self, makeLarger=False, useExpand=False):
 wx.Frame.__init__(self, None, -1, "FlexGridSizer Test")
 if useExpand:
 flag = wx.EXPAND
 else:
 flag = 0

 # Create the sizer
 sizer = wx.FlexGridSizer(rows=3, cols=3, hgap=5, vgap=5)

 # Create some block windows
 for label in labels:
 bw = BlockWindow(self, label=label)
 sizer.Add(bw, 0, flag)

 if makeLarger:
 center = self.FindWindowByName("five")
 center.SetMinSize((150,50))
 sizer.AddGrowableCol(1)
 sizer.AddGrowableRow(1)

 # Tell this window to use the sizer for layout
 self.SetSizer(sizer)

 # Change the size of the window to be the minimum
 # needed by the sizer
 self.Fit()

93wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridBagSizer

• Derives from wx.FlexGridSizer

• Also lays out items in a virtual grid, but in this case items
are positioned at the specific cell specified in the Add
method.

• This means that the order that items are added is not
significant as with the other sizers.

• Items can span rows or columns.

94wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridBagSizer

95wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridBagSizer

class TestFrame(wx.Frame):

 def __init__(self):

 wx.Frame.__init__(self, None, -1, "GridBagSizer Test")

 # Create the sizer

 sizer = wx.GridBagSizer(hgap=5, vgap=5)

 # Create some block windows in a basic grid

 for col in range(3):

 for row in range(3):

 bw = BlockWindow(self, label=labels[row*3 + col])

 sizer.Add(bw, pos=(row,col))

96wxPython: Cross Platform GUI Toolkit

Sizers: wx.GridBagSizer

 # add a window that spans several rows

 bw = BlockWindow(self, label="span 3 rows")

 sizer.Add(bw, pos=(0,3), span=(3,1), flag=wx.EXPAND)

 # add a window that spans all columns

 bw = BlockWindow(self, label="span all columns")

 sizer.Add(bw, pos=(3,0), span=(1,4), flag=wx.EXPAND)

 # make the last row and col be stretchable

 sizer.AddGrowableCol(3)

 sizer.AddGrowableRow(3)

 # Tell this window to use the sizer for layout

 self.SetSizer(sizer)

 # Change the size of the window to be the minimum

 # needed by the sizer

 self.Fit()

97wxPython: Cross Platform GUI Toolkit

Sizers: wx.BoxSizer

• The wx.BoxSizer simply lays out its items in either a
horizontal row, or a vertical stack. This is the sizer's
primary dimension.

• Items can be added such that they get only their minimal
size needed, or a proportion of the available free space.

• Items can expand to fill all available space in the alternate
dimension.

98wxPython: Cross Platform GUI Toolkit

Sizers: wx.BoxSizer

 # Create the sizer

 sizer = wx.BoxSizer(wx.VERTICAL)

 # Create some block windows

 for label in labels:

 bw = BlockWindow(self, label=label, size=(200,30))

 sizer.Add(bw, flag=wx.EXPAND)

99wxPython: Cross Platform GUI Toolkit

Sizers: wx.BoxSizer

 # Create the sizer

 sizer = wx.BoxSizer(wx.HORIZONTAL)

 # Create some block windows

 for label in labels:

 bw = BlockWindow(self, label=label, size=(75,30))

 sizer.Add(bw, flag=wx.EXPAND)

100wxPython: Cross Platform GUI Toolkit

Sizers: wx.BoxSizer

 # Create the sizer

 sizer = wx.BoxSizer(wx.VERTICAL)

 # Create some block windows

 for label in labels:

 bw = BlockWindow(self, label=label, size=(200,30))

 sizer.Add(bw, flag=wx.EXPAND)

 # Add an item that takes all the free space

 bw = BlockWindow(self,

 label="gets all free space",

 size=(200,30))

 sizer.Add(bw, 1, flag=wx.EXPAND)

101wxPython: Cross Platform GUI Toolkit

Sizers: wx.BoxSizer

 # Create the sizer

 sizer = wx.BoxSizer(wx.VERTICAL)

 # Create some block windows

 for label in labels:

 bw = BlockWindow(self, label=label, size=(200,30))

 sizer.Add(bw, flag=wx.EXPAND)

 # Add an item that takes one share of the free space

 bw = BlockWindow(self, label="gets 1/3 of the free space",

 size=(200,30))

 sizer.Add(bw, 1, flag=wx.EXPAND)

 # Add an item that takes 2 shares of the free space

 bw = BlockWindow(self, label="gets 2/3 of the free space",

 size=(200,30))

 sizer.Add(bw, 2, flag=wx.EXPAND)

102wxPython: Cross Platform GUI Toolkit

Sizers: wx.StaticBoxSizer

• A wx.StaticBoxSizer is exactly the same as a wx.BoxSizer,
with the addition that a wx.StaticBox is positioned such that
it acts as the border around the items that are managed by
the sizer

103wxPython: Cross Platform GUI Toolkit

Sizers: wx.StaticBoxSizer

104wxPython: Cross Platform GUI Toolkit

Sizers: wx.StaticBoxSizer

class TestFrame(wx.Frame):
 def __init__(self):
 wx.Frame.__init__(self, None, -1, "StaticBoxSizer Test")

 # make a panel this time as wx.StaticBox looks best on one.
 self.panel = wx.Panel(self)

 # make three static boxes with windows positioned inside them
 box1 = self.MakeStaticBoxSizer("Box 1", labels[0:3])
 box2 = self.MakeStaticBoxSizer("Box 2", labels[3:6])
 box3 = self.MakeStaticBoxSizer("Box 3", labels[6:9])

 # We can also use a sizer to manage the placement of other
 # sizers (and therefore the windows and sub-sizers that they
 # manage as well.)
 sizer = wx.BoxSizer(wx.HORIZONTAL)
 sizer.Add(box1, 0, wx.ALL, 10)
 sizer.Add(box2, 0, wx.ALL, 10)
 sizer.Add(box3, 0, wx.ALL, 10)

 # Tell the panel to use the sizer for layout
 self.panel.SetSizer(sizer)

 # Fit the frame to the needs of the sizer. The frame will
 # automatically resize the panel as needed.
 sizer.Fit(self)

105wxPython: Cross Platform GUI Toolkit

Sizers: wx.StaticBoxSizer

 def MakeStaticBoxSizer(self, boxlabel, itemlabels):

 # first the static box

 box = wx.StaticBox(self.panel, -1, boxlabel)

 # then the sizer

 sizer = wx.StaticBoxSizer(box, wx.VERTICAL)

 # then add items to it like normal

 for label in itemlabels:

 bw = BlockWindow(self.panel, label=label)

 sizer.Add(bw, 0, wx.ALL, 2)

 return sizer

106wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

107wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

class TestFrame(wx.Frame):

 def __init__(self):

 wx.Frame.__init__(self, None, -1, "Real World Test")

 panel = wx.Panel(self)

 # First create the controls

 topLbl = wx.StaticText(panel, -1, "Account Information")

 topLbl.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))

 nameLbl = wx.StaticText(panel, -1, "Name:")

 name = wx.TextCtrl(panel, -1, "");

 addrLbl = wx.StaticText(panel, -1, "Address:")

 addr1 = wx.TextCtrl(panel, -1, "");

 addr2 = wx.TextCtrl(panel, -1, "");

 cstLbl = wx.StaticText(panel, -1, "City, State, Zip:")

 city = wx.TextCtrl(panel, -1, "", size=(150,-1));

 state = wx.TextCtrl(panel, -1, "", size=(50,-1));

 zip = wx.TextCtrl(panel, -1, "", size=(70,-1));

108wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

 phoneLbl = wx.StaticText(panel, -1, "Phone:")

 phone = wx.TextCtrl(panel, -1, "");

 emailLbl = wx.StaticText(panel, -1, "Email:")

 email = wx.TextCtrl(panel, -1, "");

 saveBtn = wx.Button(panel, -1, "Save")

 cancelBtn = wx.Button(panel, -1, "Cancel")

 # Now do the layout.

 # mainSizer is the top-level one that manages everything

 mainSizer = wx.BoxSizer(wx.VERTICAL)

 mainSizer.Add(topLbl, 0, wx.ALL, 5)

 mainSizer.Add(wx.StaticLine(panel), 0, wx.EXPAND|wx.TOP|wx.BOTTOM, 5)

109wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

 # addrSizer is a grid that holds all of the address info

 addrSizer = wx.FlexGridSizer(cols=2, hgap=5, vgap=5)

 addrSizer.AddGrowableCol(1)

 addrSizer.Add(nameLbl, 0, wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)

 addrSizer.Add(name, 0, wx.EXPAND)

 addrSizer.Add(addrLbl, 0, wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)

 addrSizer.Add(addr1, 0, wx.EXPAND)

 addrSizer.Add((10,10)) # some empty space

 addrSizer.Add(addr2, 0, wx.EXPAND)

 addrSizer.Add(cstLbl, 0, wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)

 # the city, state, zip fields are in a sub-sizer

 cstSizer = wx.BoxSizer(wx.HORIZONTAL)

 cstSizer.Add(city, 1)

 cstSizer.Add(state, 0, wx.LEFT|wx.RIGHT, 5)

 cstSizer.Add(zip)

 addrSizer.Add(cstSizer, 0, wx.EXPAND)

110wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

 addrSizer.Add(phoneLbl, 0, wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)

 addrSizer.Add(phone, 0, wx.EXPAND)

 addrSizer.Add(emailLbl, 0, wx.ALIGN_RIGHT|wx.ALIGN_CENTER_VERTICAL)

 addrSizer.Add(email, 0, wx.EXPAND)

 # now add the addrSizer to the mainSizer

 mainSizer.Add(addrSizer, 0, wx.EXPAND|wx.ALL, 10)

 # The buttons sizer will put them in a row with resizeable

 # gaps between and on either side of the buttons

 btnSizer = wx.BoxSizer(wx.HORIZONTAL)

 btnSizer.Add((20,20), 1)

 btnSizer.Add(saveBtn)

 btnSizer.Add((20,20), 1)

 btnSizer.Add(cancelBtn)

 btnSizer.Add((20,20), 1)

 mainSizer.Add(btnSizer, 0, wx.EXPAND|wx.BOTTOM, 10)

111wxPython: Cross Platform GUI Toolkit

Sizers: real-world example

 # Finally, tell the panel to use the sizer for layout

 panel.SetSizer(mainSizer)

 # Fit the frame to the needs of the sizer. The frame will

 # automatically resize the panel as needed. Also prevent the

 # frame from getting smaller than this size.

 mainSizer.Fit(self)

 self.SetSizeHints(self.GetSize())

112wxPython: Cross Platform GUI Toolkit

Questions?

113wxPython: Cross Platform GUI Toolkit

Creating Custom Widgets

• Making custom controls fit well with wxWidgets takes just
a few easy steps beyond deriving a new class and
implementing behaviors.

• See wx/lib/buttons.py for an example

114wxPython: Cross Platform GUI Toolkit

Creating Custom Widgets

1. Derive from wx.PyControl. This enables reflection of some pertinent
C++ virtual methods to Python methods in the derived class.

2. Call SetBestFittingSize from the __init__ method, passing the size
passed to __init__. This helps set things up properly for sizers, and
also sets the size of the control appropriately (using either the size given
or the best size.)

3. Call InheritAttributes from the __init__ method. If the parent has
non-standard font or colors then it will set them for your control.

4. Implement a DoGetBestSize method, returning the wx.Size that would
best fit your control based on current font, label or other content, etc.

5. Implement an AcceptsFocus method, returning True if the control is
meant to receive the keyboard focus.

115wxPython: Cross Platform GUI Toolkit

Questions?

116wxPython: Cross Platform GUI Toolkit

Double Buffered Drawing

• When drawing on a window takes several steps, or can be
time consuming, you often end up with flicker or other paint
artifacts

• Following a simple recipe for “double-buffered drawing”
often eliminates flicker and also optimizes the EVT_PAINT
handler.

• You do all your custom drawing to a wx.Bitmap (the buffer)
and then Blit parts of the buffer to the window as needed.

• The wx.BufferedDC class helps simplify the process

117wxPython: Cross Platform GUI Toolkit

Double Buffered Drawing

• In your class’ __init__ create and initialize the buffer:

 self.buffer = wx.EmptyBitmap(*size)

 dc = wx.BufferedDC(None, self.buffer)

 self.DrawBackground(dc)

 self.DrawContent(dc)

• Bind the wx.EVT_SIZE event and in the handler recreate and
initialize the buffer:

 size = self.GetClientSize()

 self.buffer = wx.EmptyBitmap(*size)

 dc = wx.BufferedDC(wx.ClientDC(self), self.buffer)

 self.DrawBackground(dc)

 self.DrawContent(dc)

118wxPython: Cross Platform GUI Toolkit

Double Buffered Drawing

• Whenever you need to update the drawing, use a
wx.BufferedDC with a wx.ClientDC. When the buffer DC is
dereferenced it will flush its contents to the window via the
client DC:

 dc = wx.BufferedDC(wx.ClientDC(self), self.buffer)

 dc.SetPen(wx.Pen(self.GetForeGroundColour()))

 dc.DrawLine(old_x, old_y, x, y)

• Bind the wx.EVT_PAINT event and use wx.BufferedPaintDC to
use your buffer to refresh the damaged portions of the the
window:

 def OnPaint(self, evt):

 dc = wx.BufferedPaintDC(self, self.buffer)

119wxPython: Cross Platform GUI Toolkit

Questions?

120wxPython: Cross Platform GUI Toolkit

Last minute additions

• Slides of this presentation are available at:
http://wxPython.org/OSCON2004/advanced/

